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Abstract: This paper presents a novel approach, which combines the iterative and expec-

tation maximization approaches, into an incremental method for concurrent mapping and

localization for mobile robots. The approach uses 2D laser scanners to generate simple 3D

maps of the environment. The simplification of the 3D maps is done using multi-resolution

approach from computer graphics literature. The approach uses scan matching for map-

ping and a sample based probabilistic method for localization, which enables it to work

with multiple robots, and in large cyclic environments. The approach is extremely robust,

and can create accurate maps of the terrain without the use of odometry, in an unknown

environment. The results show the robustness of the approach in numerous situations.

1 Introduction

The word ”autonomous” comes from the Greek words ”auto” and ”nomos”, which mean, ”self”
and ”law” respectively. Hence the term autonomous means something which is self governing,
self controlling. The term autonomous have been used a lot recently in conjunction with
robotics. The idea of having a robot which is completely autonomous is the current research
goal, and much work has been done in the research area. The biggest problem to solve is that
of simultaneous localization and mapping (SLAM) or concurrent mapping and localization
(CMAL). Before I define the problem, it is important to explain these terms. Localization
means, the act of keeping track of oneself in an environment. The SLAM/CMAL problem
is defined as follows: Given an unknown environment, and an unknown start position, there
should be an approach to create a map of the environment, while keeping track of the movement
of the robot. Although this seem like a simple problem, it is quite difficult due to the ”chicken
and the egg” nature of it. Work done by Moraves and Elfes demonstrate how maps can
be created when the location of the robot is known [2]. These tests involved taking sonar
readings of an object from number of known poses (a pose is an x, y, theta coordinate of the
robot relative to a certain plain), and triangulating the position of the object. There has also
been a lot of work done in regards to localization in a known environment. This involves the
idea of map matching, among others, where a scan is matched to the map in the local frame
of the robot [3].
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There has been some progress made recently to combine the both areas. Most of these
approaches iteratively localize and map, using each new sensor scan the robot receives. It
builds the maps incrementally [4–7]. The basic idea is quite simple. The approach takes a
scan, and creates a map out of it, then it uses the previous scan, and the action performed, to
move in the previous scan. At this point, it takes a new scan and includes that in the overall
map. This iterative process makes the approach quite fast, and can be used in real-time
applications. However, since the error in each step is accumulated, the overall error after a
number of steps, in a large cyclic environment, can be quite large. Cyclic environment are
ones which contains a lot of cycles and loops. This is due to the fact that at each step, we have
a map which cannot be modified; hence there is no concept of backwards correction (4.2).

To solve this problem, a number of Expectation Maximization approaches have also been used
recently [8,9]. Expectation Maximization (EM) is an area, which uses probabilistic methods
to find the most likely position of something in a certain environment. The simplest example
is that of a best fit line, for a selection of points. It works by searching through all the possible
points at the same time. In the example of the best fit line, this is 179 degrees of gradient
of the line. This way, it considers all possible positions in all previous scans, simultaneously,
using an iterative refinement procedure to narrow down to most likely position in the global
map. These approaches have shown good results in large cyclic environments, but due to
the large number of possibilities, and large run-time; these approaches are normally used in
batch, in a non-real-time application.

Getting the pose is only the first part in creating a 3D Map. The second step is actually
relating the sensor data with the pose. Most work which has been done so far focuses mostly
on 2D mapping, using a single robot. Our focus is on 3D mapping through the use of multiple
robots.

Our approach is to combine the both types of algorithms described above (EM and incre-
mental), in a way such that the advantages of both are utilized. This includes fast real-time
application, and robustness in large, cyclic environments. This is realized in a novel approach
by combining the idea of posterior estimate with that of incremental map construction using
maximum likelihood estimators. The approach turns out to be very robust in large cyclic en-
vironments, which still being able to run real-time on a low-end computer. It also allows data
collection through multiple robots by having them localize relative to each other. The use of
two laser scanners, (one horizontal and one vertical) also allows us to create a 3d map, where
a multi-resolution algorithm is used to reduce the complexity of the map. Results showed
that the approach is very robust, even in absence of odometry data.

The structure of the paper is as follows: In section 2 we define the problem we are aiming to
solve. In section 3 we describe the existing state of the art approaches towards solving the
problem. In section 4, we explain the four main parts of our approach. This is followed by
results in section 5, ending with a summary in section 6.

2 Problem Definition

The problem of concurrent mapping and localization can be treated as a search where the
goal is to find most likely map for given data. A map is a collection of scans and their poses
[10,11]. The term pose refers to a tuple < x, y, θ >. Here x and y refers to a location relative
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to some hypothetical coordinate system, and the θ refers to the orientation of the scan. Let
m be a map. Then at time t, the map is written as

mt = {〈oτ , ŝτ 〉} (1)

where τ = 0, ..., t are time intervals, oτ denotes a laser scan and ŝτ is the pose of the scan.
As mentioned above, our goal is to find the most likely map given the data dt. This is shown
below:

dt = {s0, a0, s1, a1, ..., st} (2)

arg max
m

P (m | dt) (3)

Here dt is a sequence of laser scans (sτ ) and corresponding odometry readings (aτ ). We
assume here that observations and odometry readings are alternated.

3 Existing Approaches

3.1 Normal Incremental Mapping

The conventional incremental approach is very popular in the literature. This is considered
a baseline approach towards solving the concurrent localization and mapping problem. It is
incremental but is unable to revise the map backwards in time, and therefore accumulates
errors. Therefore, loop closing cannot be utilized to reduce the error. Loop Closing is when
a robot goes around and creates a cycle (closes a loop) by passing through the same location
twice. When a loop closing is detected, the following problems are detected in this approach:

1. Since the pose errors accumulate, they can grow very large. Then when closing the
loop in a cyclic environment, search algorithms like gradient descent can fail to find the
optimal solution.

2. When a loop is closed in a cyclic environment, past poses may need to be revised to
distribute the error, and generate a consistent map. This approach is incapable of doing
this.

The idea is very simple, and therefore, very popular: Given a scan and an odometry reading,
determine the most likely pose for the scan. Then append the pose and the scan to the map.
Freeze it once and forget about it. This is represented below:

ŝt = arg max
st

P (st | ot, at−1, ŝt−1) (4)

The pose is usually searched through hill climbing with gradient descent. This result is then
added to the map as below:

mt+1 = mt ∪ {〈ot, ŝt〉} (5)

As it can be seen, only a single guess is maintained as to where the robot is at each scan,
instead of a full distribution. Furthermore, since the past estimates are never revised, this
approach becomes very brittle in large cyclic environments. An example is shown in figure 1.
Here it can be seen that when the robot creates a loop, a noticeable error leads to mismatching
of the wall. This is because in the simple incremental approach, error accumulates over time.
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An important thing to note here is that these restrictions do not apply to EM family of
mapping algorithms [8, 9].

Figure 1: Map created through a simple incremental approach. Since error accumulates, when
a loop is closed, there is noticeable error.

3.2 Likelihood Function

As shown in equation 3, our goal is to find most suitable pose for the given data and associated
map P (m | dt). The likelihood function has been derived in [9] as follows:

P (m | dt) = ηP (m)

∫
...

∫ t∏
τ=0

P (otau | m, sτ )×
t−1∏
τ=0

P (sτ+1 | aτ , sτ )ds1...dst (6)

where n is a normalizer and P (m) is prior over the maps, both of which can be omitted since
we are only concerned with the most suitable pose. Thus the equation simplifies to a function
with two terms, the motion model, P (sτ+1 | aτ , sτ ) and the perceptual model, P (oτ | mτ , sτ ).
Since neither of these models depends on time, we can assume them to be stationary. This
gives us P (s | a, ś) for the motion model and P (o | m, s) for the perceptual model.
An important aspect of these simplified models is that they are differentiable. This leads to
the following gradients for efficiently searching for the most likely pose of the robot, given its
sensor measurements.

∂P (s | a, ś)
∂s

∂P (o | m, s)
∂s

(7)

These gradient computations are carried out highly efficiently in our implementation, enabling
more than 1000 gradient computations per second on a low-end PC. This fact is used in our
approach to search for the most optimal pose estimate later in hill climbing.
The probabilistic motion model we use in this paper is shown in figure 2. Assuming we
know the starting position of the robot, ś and the executed action a, the figure shows the
probability of being at pose s. The banana shape is due to the fact that the robot motion
can have noise in the rotational and the translational component. It can be seen that the
probability distribution for the simple motion is more focused, compared to the one with the
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Figure 2: The probability distribution P (s | a, ś) for the robot’s posterior pose s after moving
distance a beginning at location ś for two different trajectories.

more complicated motion. This model is based on simple kinematic equations as demonstrated
in [11].

Figure 3: The probability distribution of an object 180 degrees in front of a robot (red dot).
The darker region suggest smaller likelihood of an object being present.

The probabilistic perceptual model is shown in figure 3. This has been inherited from literature
on scan matching and projection filtering [10, 11]. The assumption here is that a received
sensor scan will be unlikely to show an object at a place which has been indicated as free
space in a previous scan. This likelihood is dependent on the distance traveled. The larger
the distance traveled, the lower the likelihood. In the figure, this is shown by areas marked
as gray. The darker the color, the smaller the likelihood of an object being detected there in
subsequent scans. The robot is shown as the red dot. Another thing to notice here are that
the areas which are occluded (cannot be seen from the sensor) and marked white, and are not
part of any subsequent calculations. This is often detected using ray-tracing. An example of
how this sensor model works is shown in figure 12 in appendix.

We can see that maximization of equation 6 results in the most likely output map. Since
the likelihood function cannot be maximized incrementally, it cannot be used in real-time. In
addition, it replies on the sensor measurements to get information about the previous robot
locations, which can then be revised to get a global optimal map. As mentioned in [10, 11],
when a loop is closed in a large cyclic environment, the error could be very large. In such
cases, when a loop is closed, an optimal map requires correction of the map backwards in
time. This is the main reason such approaches in the past, such as ones in [8, 9] are off-line
algorithms which may sometimes take multiple hours to compute the most likely map.
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4 Our Approach

Our approach has four main parts. The first is the calculation of the pose, the second is the
ability to optimize globally once a loop is detected, the third is the ability to use multiple
robots to map and the fourth is the ability to create 3d maps. This section explains these
four parts.

4.1 Pose Calculation

In equation 4, the approach computes the maximum likelihood pose. Our approach, instead,
computes the full posterior over robot poses. This approach is based on the literature
on probabilistic mapping and Markov localization as shown in [8, 9, 12, 13]. Posterior is
a probability distribution over poses conditioned on past sensor data and is represented as
below:

Bel(st) = P (st | dt,mt−1) (8)

The Bel in equation 9 stands for robots belief as to where it is. Algorithms which maintain a
posterior estimation, instead of a single maximum likelihood guess, are more robust as they
offer versatility to improve previous estimates based on new data, to create an globally optimal
solution. The algorithm we are using is based on the Markov localization algorithm [12].
Our approach, like Markov localization, is incremental. At time t = 0, the belief Bel(s0)
is centered on origin. Suppose at time t, we know the previous belief Bel(st−1), which is
distribution over poses st−1 at time t − 1, and we execute action at−1 and observe ot. Then
the new belief is:

Bel(st) = ηP (ot | st,mt−1)

∫
P (st | at−1, st−1)Bel(st−1)dst−1 (9)

where η is a normalizer and mt−1 is the best available map. The derivation is shown in the
appendix (13). Once this posterior is computed, the new pose is estimated using the following
equation:

s̄t = arg max
st

Bel(st) (10)

From this, we get the new map as follow:

mt+1 = mt ∪ {〈ot, s̄t〉} (11)

This is similar to the incremental approach as in equation 4 and 5 but the main difference
lies in how ŝ and s̄ are calculated. Whereas ŝ is calculated using the most recent sensor scan
and the pose, s̄ is calculated using the entire posterior Bel(st). However, to narrow down the
search space when closing a loop, a diameter of uncertainty is modeled. This is similar to the
motion model explained earlier. If the loop is large, then the margin of uncertainly is large
as well.

Our approach also makes use of samples to approximate the posterior, instead of using analog
values. In relation to posterior estimation, it is called a particle filter [14] and the approach is
equivalent to Monte Carlo localization. This is represented in figure 4. The shape is similar to
the banana shape as observed in figure 2. Each of the sample sets is an approximation of the
densities (darkness in figure 2). This results in a convergence rate of 1√

N
for approximating an

arbitrary posterior [15]. Sampling has been used in numerous areas of research, from Rubin’s
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importance sampler [16] to tracking in computer vision [17] to mobile robot localization
[13, 18]. One factor for such wide-spread usage is the ease of implementation of a particle
filter [13]. An example of this is shown in figure 13 in appendix.

Figure 4: Sample based approximation for posterior Bel(s). Density is represented by a set
of samples, weighted by numerical importance.

As mentioned in section 3.1, since a single starting pose is used for the hill-climbing search, it
might fail to produce a globally optimal map, especially when a loop is closed. The sample-
based representation described above, and being used in our approach directly facilitates
optimization in equation 10 to get an optimal pose estimate. The approach uses each sample
as a starting point for gradient descent, and then calculates a likelihood function using it. If
the samples are spaced densely, it is likely that a global maximum can be found and a globally
optimal map can be generated.

4.2 Backward Correction

When the robot is moving in an environment without loops, the pose calculated through
both equation 10 and 4 are the same. These values defer when a loop is detected, hence our
backward correction is dependent on the following equation:

∆st = s̄t − ŝt (12)

When ∆st 6= 0, the posterior estimate is different, hence poses have to be revised backwards
in time. Our approach handles this in three steps:

1. Size of the loop is determined by checking the scan in the map which leads to the
adjustment.

2. The error ∆st is distributed proportionally among all poses in the loop. This places the
intermediate poses in a good starting match for subsequent gradient search.

3. Gradient descent is applied iteratively for all the poses which form the loop until the
map is globally optimal under the constraint created from the loop detection.

These three steps are an efficient approximation for maximum likelihood estimate for the
entire loop, which can be implemented very fast.
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4.3 Multi-Robot Mapping

The posterior estimation component of our approach makes it easy to generate maps with
multiple robots. We assume that although the initial pose of the robots relative to each other
is unknown, each robot starts within the map of a specific robot called team leader. Each
robot then localizes itself in the map of the team leader, to generate a single map. It then
becomes a simpler problem of localization in a known map. This is illustrated in figure 5.
In the start, the initial samples of the robot are uniformly distributed in the map of the
team leader. As the robot moves, the uncertainly decreases until the robot finds it pose in b.
Further movement increases the area of uncertainty.

Figure 5: a) Uniform distribution in the existing map to show initial uncertainly. b) The
robot finds it pose relative to existing map. c) Increasing area of uncertainty as the robot
moves.

4.4 3D Mapping

One important goal of our research is to be able to generate accurate 3D Maps. Using two
laser range finders, as shown in figure 10b in appendix, 3D maps of the environment can be
generated. The forward looking laser scanner is used for localization and mapping, whereas
the upward looking one is used to generate 3D map of the environment. Given the accurate
pose estimate, creating the 3D map is simple to do by connecting nearby laser scans with
each other; however this leads to large noise, and overly complex output map.
In order to simplify the 3D Map, our approach utilizes a number of techniques. The first
is a constraint is used to remove outliers based on distance. If two scans are separated by
more than twice the distance, the robot moved between those scans, these scans are not
considered. Furthermore, we use a simplification algorithm which has been developed to
simplify polygonal models for real-time rendering in computer graphics [19, 20]. It does this
by iteratively simplifying multi-polygon surface models by fusing those which look similar
when rendered. This results in a simple model in terms of complexity, which is similar to the
original in terms of accuracy and looks, which can be used in real-time.

5 Results

Before the results are shown, it is important to clarify how the data is used in the creation
of the maps and in localization. To reduce the complexity, scans are only added to the map
if the robot has moved 2 meters. This reduces the size of the map from thousands of scans
to hundreds of scans. However, to keep the localization accurate, all scans are used in it. To
check the robustness of the approach, random errors were introduced into the odometry data.
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5.1 Resources and Time

One important aspect of the research was to have an approach which is real-time. As men-
tioned in section 4.1, the sampling allows for a very large convergence rate, and that combined
with the simple gradient decent calculation of likelihood function, enable very fast calculation
of the pose. Furthermore, the backwards tracking is also extremely fast, with can be carried
out between two sensor measurements for all experiments in this paper. Also, the simplifica-
tion of the 3D model of the map leads to it being real-time. Overall, all the results shown in
this paper have been obtained in real-time on a low-end computer.

5.2 Loop Closing

Figure 6 is a good illustration of how well the backward correction works. The robot moves
and the uncertainty around it increases in 6a and 6b. The posterior belief is represented by
the dots centered around the maximum likelihood pose. When the loop is closed in 6b, the
error is significant and can be seen in front of the robot by the misaligned walls. However,
when a loop is closed in 6c, our approach identifies the error, and corrects past beliefs and
reduced the robots uncertainty accordingly. The result is an accurate map as seen in 6c, where
the error from the cycle has been eliminated.

Figure 6: a) and b) shows increasing uncertainty around the robot as it moves. c) shows
reduced uncertainty once a loop is closed.

5.3 Robustness

To test the robustness of the approach, we attempted to build the same map in the absence
of odometry data. The raw data without odometry is shown on the left in figure 7. The
corrected map is shown on the right in figure 7. It can be seen visually that this looks very
similar to the one generated in the previous section. One important thing to keep in mind
is that the approach only works in environment with sufficient variations and will fail in the
absence of odometry data in a featureless environment. Nevertheless, the map illustrates the
robustness of the approach.
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Figure 7: Left: No odometry. Right: Output map

To further demonstrate the robustness, we used the robot shown in appendix in 10c. This
robot uses tracks and has errors often as large as 100%, depending on the conditions of the
floor. This could lead to very bad results as seen on left in figure 8. The right image shows
the output map with the robot’s trajectory. This map is very interesting as it represents the
worst results from all the experiments in this paper. Some of the walls are not aligned, and
are rotated by up to 2 degrees. Nevertheless, given the original raw data, and the fact that our
approach is not constraint by orthogonal walls, the results are fairly accurate and sufficient
for navigation. Furthermore, once the environment is explored more, loops could be created,
improving the global map.

Figure 8: Left: Bad odometry. Right: Output map

5.4 Multi-Robot Mapping

Figure 5 demonstrates the results of mapping through multiple robots. In a, the robot ini-
tializes itself in the map of the team leader robot, with uniform distribution across the map.
After some motion, the posterior is focused on a single location in b, and the incoming sensor
data is used to further build the map. Part c shows the situation after a few seconds with
robot progressing through the map of the team leader. The robot still knows its location but
uncertainty is increasing with the motion.

5.5 3D Mapping

Figure 9, and in appendix figure 11, show results for the 3D mapping. Figure 9 shows a short
corridor section. The corridor can be seen, and sections of roof which was detected through
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the open door is also visible.
Figure 11 shows a larger section, of about 60 meters long. The rendering algorithm is a
standard virtual reality tool (VR-web) which enables the user to remotely inspect the building
by ”flying through the map”. The top row is generated from raw laser data and it contains
82,899 polygons. In contrast, the simplified polygonal model is on the bottom row, which
contains only 8,289 polygons. Visually, both look identical and have similar level of accuracy;
however, the lower one is 10 % of the complexity as the one created from raw data.

Figure 9: 3D Map

6 Discussion

The approach presented in this paper is new, real-time, robust, on-line approach towards con-
current mapping and localization in indoor environments. The approach combines advantages
from incremental mapping with advantages from posterior estimation and backwards correc-
tion to produce a fast and robust algorithm which can be extended to multiple robots and
3D mapping. The end result of our approach is simple, compact real-time rendering of the
3D model of the environment. The experimental results show the robustness of the approach,
even in cases where odometry will not provided. The results were highly accurate maps, with
the worst test case having misalignment of about 2 degree with some walls. All of this was
done in real-time on a low-end PC. This is a big improvement over existing EM approaches
towards concurrent mapping and localization, which sometimes multiple hours to complete.
Our approach uses implementation of posterior estimate and back correction which is ex-
tremely fast, resulting in processing of large cyclic environments in real-time. Just by adding
a few more constraint, such as checking for orthogonal surfaces, the results of our approach
could be improves significantly. Nevertheless, our approach surpasses all other approaches for
concurrent mapping and localization, in terms of speed, accuracy and robustness.1 2
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A Appendix

Figure 10: Robots manufactured by RWI/ISR : a) Pioneer robots used for multi-robot map-
ping. b) Pioneer robot with 2 laser range finders used for 3D mapping. c) Urban robot for
indoor and outdoor exploration.

Figure 11: Views of the 3D map, for high resolution model (top row) and low resolution model
(bottom row)
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From the common Markov localization approach, as shown in [12,13], assuming a static map,
we can derive the following equations:

Bel(st) = P (st | dt,mt−1) (13)

= P (st | dt−1, at−1, ot,mt−1) (14)

= ηP (ot | st, dt−1, at−1,mt−1)P (st | dt−1, at−1,mt−1) (15)

= ηP (ot | st,mt−1)

∫
P (st | dt−1, at−1, st−1,mt−1) (16)

P (st−1 | dt−1, at−1,mt−1)dst−1

= ηP (ot | st,mt−1)

∫
P (st | at−1, st−1)Bel(st−1)dst−1 (17)

Figure 12: Left map shows possible places on the map where the robot could be. The right
map shows the situation after a few minutes. The search area is now more focused around
the actual position of the robot.
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Figure 13: The black bars depict the particles representing the belief. a) A uniformly dis-
tributed sample set shows the person’s initially unknown position. b) Sensor detects a door.
The sample set is obtained from weighing the importance factors in proportion to the like-
lihood of measurement. c) An implementation of prediction step. The samples were drawn
from the previous set with probability proportional to the importance factors (Re-sampling).
d) Sensor detects a door. e) The sample set after another prediction step (Re-sampling).
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